Abstract
Over the last decades, bacterial resistance has become one of the emerging health threats. Particularly dangerous are bacterial strains resistant to various antibacterial drugs. Herein, we modified graphene quantum dots (GQDs) to produce efficient photo-induced antibacterial agents. GQDs were modified with (a) ethylene-diamine (EDA), (b) with EDA and gold nanoparticles (AuNPs), and (c) 3-amino-1,2,4-triazole (TA) using carbodiimide coupling. Photo-induced antibacterial activity of modified GQDs was tested against 8 bacterial strains. Treatment with modified GQDs and blue light (wavelength of 470 nm) resulted in remarkable antibacterial activity with minimal inhibitory concentrations (MIC) of 7.81 µg mL−1 for K. pneumoniae and S. aureus and 3.9 µg mL−1 against MRSA and E. faecalis. Planar organization of GQDs functionalized with AuNPs allowed direct access of molecular oxygen to AuNPs leading to more efficient 1O2 production as well as the 1O2 production from excited GQDs. Thus, GQDs functionalized with AuNPs showed outstanding efficiency in the battle against several bacterial strains, particularly those that lead to nosocomial infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.