Abstract

A novel nanocomposite of stainless-steel nanotubes with graphene quantum dots (SSNT@GQD) was synthesized to degrade phenanthrene photocatalytically under visible light. Photocatalytic performance of bare stainless-steel nanotubes (SSNT) is not satisfactory due to the fast recombination of photoinduced electron-hole pairs. This phenomenon was effectively overcome by inclusion of GQDs and addition of persulfate as an external electron acceptor to improve charge separation. The pseudo-first-order rate constant of phenanthrene degradation by SSNT@GQD with persulfate under visible light was 0.0211±0.0006min-1, about 42 times higher than that of persulfate and visible light, 0.0005±0.0000min-1. Effects of different water quality parameters were investigated, including levels of initial pH, natural organic matters, bicarbonate, and chloride. Sulfate radicals, superoxide radicals, and photo-generated holes were the key reactive species in this photocatalytic process. Based on the analysis of intermediates using purge and trap-GC-MS, possible photocatalytic degradation pathways of phenanthrene in this process were proposed. The SSNT@GQD showed high figure of merit (99.5 without persulfate and 78.7 with persulfate) and quantum yield (1.56×10-5moleculesphoton-1 without persulfate and 4.64×10-5moleculesphoton-1 with persulfate), indicating that this material has excellent potential for practical photocatalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.