Abstract
Despite the narrow band gap energy, the performance of zinc ferrite (ZnFe2O4) as a photoharvester for solar-driven water splitting is significantly hindered due to its sluggish charge transfer and severe charge recombination. This work reports the fabrication of a hybrid nanostructured hydrogenated ZnFe2O4 (ZFO) photoanode with enhanced photoelectrochemical water-oxidation activity through coupling N-doped graphene quantum dots (GQDs) as a hole transfer layer and Co-Pi as a catalyst. The GQDs not only reduce the surface-mediated nonradiative electron-hole pair recombination but also induce a built-in interfacial electric field leading to a favorable band alignment at the ZFO/GQDs interface, helping rapid photogenerated hole separation and serving as a conducting hole transfer highway, improve the hole transportation into the Co-Pi catalyst for enhanced water oxidation reaction kinetics. The optimized ZFO/GQD/Co-Pi hybrid photoanode delivers a 23-fold photocurrent enhancement at 1.23 V versus the reversible hydrogen electrode (RHE) and a significant 360 mV reduction in the onset potential, reaching 0.65 VRHE compared with the ZFO photoanode under 1 sun illumination in a neutral electrolytic environment. This investigation underscores the mechanism of synergistic interplay between the hole transport layer and cocatalyst in boosting the solar-illuminated water-splitting activity of the ZFO photoanode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.