Abstract

Nanoparticles and nanohybrids with well-defined structures, along with tunable localized surface plasmon resonance (LSPR) properties and optimized sensitivity, are crucial and highly desired for surface-enhanced Raman spectroscopy (SERS) applications. In this article, we report on a very promising and flexible SERS platforms with a tunable LSPR response and sensitivity based on Ag nanoplates and graphene oxide (GO). The SERS detection sensitivity can be easily optimized and significantly improved by fine-tuning the LSPR band of the Ag nanoplate/GO substrates (to enhance the SERS response) during sample preparation. We applied the as-prepared SERS platform for sensitive SERS detection of 4-mercaptobenzoic acid and 4-aminothiophenol and found that the SERS signal varied markedly (by ∼10-15-fold) with the fine-tuning of the LSPR band. The SERS enhancement factor of the Ag nanoplate/GO complexes was more than 10(4) times larger than that obtained using spherical Ag nanoparticles. The as-prepared Ag nanoplate/GO platforms, because of their excellent stability and tunable LSPR properties, will find promising practical SERS applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call