Abstract

Nanocomposite solid polymer electrolytes (NSPEs) with PEO as the matrix and (i) GO or (ii) GO-graft-PEG6k or (iii) GO-graft-PEG6k-block-P(MA-POSS) as nanofillers have been fabricated to elucidate the impact of the filler morphology on the lithium ion conductivity. GO-graft-PEG6k was obtained by grafting PEG6k onto GO via esterification. GO-graft-PEG6k-block-P(MA-POSS) was prepared via surface-initiated atom transfer radical polymerization. Fourier-transform infrared spectroscopy revealed enhanced salt dissociation and complexation between the filler and PEO host that could be attributed to Lewis acid-base interactions. Electrochemical impedance spectroscopy revealed the improved ion conductivity of the fabricated NSPEs as compared with the pristine PEO-LiClO4. As an example, at 50 °C, the ion conductivity increased to 4.01 × 10-5 and 6.31 × 10-5 S cm-1 with 0.3% GO and 0.3% GO-graft-PEG6k, respectively, from 2.36 × 10-5 S cm-1 of PEO-LiClO4, suggesting that the filler with brush-like architecture (GO-graft-PEG6k) is more efficient in enhancing the ion conductivity. Further increase in filler content resulted in lowering of the ion conductivity that could be ascribed to aggregation of the filler. The most dramatic impact on conductivity was observed with the incorporation of brush-like GO-graft-PEG6k-block-P(MA-POSS) as a nanofiller (3.0 × 10-4 S cm-1 at 50 °C with 1.0 wt % filler content). The increase in ion conductivity in the current systems, as opposed to the conventional view, could not be correlated with the content of the amorphous phase of the matrix. The conduction mechanism is still unclear; nevertheless, it could be assumed that in addition to the ion conduction through the PEO matrix, the filler forms additional low-energy ion conducting channels at its interface with the matrix. The pendent POSS nanocages of GO-graft-PEG6k-block-P(MAPOSS) might probably increase the free volume at the interface with the matrix that is associated with higher chain and ion mobility, thus further enhancing the ion conductivity as compared with GO and GO-graft-PEG6k. The faster ion dynamics in 1.0 wt % GO-graft-PEG6k-block-P(MAPOSS) NSPEs has also been verified by the dielectric relaxation studies. Thus, integration of both the PEG and POSS nanocages into GO-grafted brush-like architecture offers a new tool for tuning the lithium ion conductivity for potential Li ion battery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.