Abstract

Ammonia gas sensors have always received significant attention as robust platforms for emission control, food safety, and monitoring human exhaled breath for the early diagnosis of diseases such as dysfunction of the kidney and liver. This study explores the development of a microwave-based split-ring resonator (SRR) sensor with enhanced sensitivity to detect ammonia gas at low concentrations. The sensor is based on a nanocomposite fabricated by incorporating 10 wt% of graphene oxide (GO) into polyaniline (PANI) via the in-situ polymerization of aniline monomers over the surface of the GO sheets. The addition of GO to PANI results in a high sensitivity of 0.038 dB ppm−1 for low concentrations (1–25 ppm) and 0.0045 dB ppm−1 for high concentrations (> 25 ppm) of ammonia gas, in a 150–400 s time interval at room temperature. The prepared sensor can selectively sense ammonia gas in the presence of other higher concentrations of hazardous gases and a wide range of relative humidity levels (15–90%). The response signal is repeatable after 30 days with less than 0.32% deviation. The developed low-cost and robust sensor has the potential to monitor ammonia gas in various applications, including medical, environmental, food, and agricultural sectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.