Abstract

The treatment of antibiotic wastewater pollution is imminent, the studies of double-network hydrogels as adsorbents have gradually increased, it is quite important to develop a non-toxic hydrogel with excellent properties as adsorbent. In this study, a graphene oxide modified κ-carrageenan/sodium alginate (GO-κ-car/SA) gel was prepared by calcium hardening. The addition of GO nanosheets enhances the mechanical strength and anti-swelling property of the double-network hydrogel, making it possible for the application in the fixed-bed column system. The elastic modulus is twice as much as the hydrogel without GO. The maximum adsorption capacity in the experiments of the GO-κ-car/SA gel for CIP and OFL can reach 272.18 mg g-1 and 197.39 mg g-1, respectively. The GO-κ-car/SA gel always remains negatively charged, which means that the adsorption capacity of the gel is better in an acidic environment. In the fixed-bed column system, through Thomas fitting, the maximum adsorption capacity of the simulated OFL wastewater (200 mg L-1) is 83.99 mg g-1. The adsorption mechanism of antibiotics by GO-κ-car/SA gel depends on hydrogen bond, functional groups and electrostatic adsorption. The good hydrophilic properties, excellent adsorption capacity and high mechanical strength, which can ensure that the adsorbent is in full contact with the contaminants without major deformation or damage, makes the study more helpful for the further study on hydrogel in the fixed-bed column system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.