Abstract

Reduced graphene oxide (rGO) has attracted attention as an active electrode material for flexible electrochemical devices due to its high electric conductivity and large surface area. Compared to other reduction processes, laser reduction is a precise, low-cost, and chemical-free process that is directly applied to graphene oxide (GO) membranes. This study aims to develop rGO through laser irradiation for application as electrodes in thin flexible electrochemical sensors. Laser irradiation parameters will be optimized to achieve reduction of a low oxygen to carbon (O/C) ratio and surface impedance. The influence of humidity on the impedance of rGO electrodes will be studied. The observed instability of the rGO electrode is related to incomplete reduction and oxygenated defects involved in reduction. Partially removed oxygenated functional groups not only influence the impedance of the electrode but make it sensitive to the humidity of the working environment. The result provides references for GO’s laser reduction optimization, demonstrates the potential of applying rGO as an electrode in sensing applications, but also reveals the limitation of applying the laser reduced rGO electrode in a non-constant humidity environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.