Abstract
In the pursuit of sustainable energy, hydrogen stands out as a promising alternative to fossil fuels due to its clean and efficient energy properties. This study investigates a novel approach to synthesize graphene oxide (GO) from biomass waste for sustainable hydrogen production. Three biomass sources - walnut shells, peanut shells, and parthenium hysterophorus - were used to produce GO, which was then used as electrode material in electrochemical hydrogen evolution reactions (HER). The highest yield of GO was obtained for the walnut shells (20 %). It demonstrated the best electrocatalytic performance, achieving a current density of −29.32 mA/cm2 at −0.82 V, surpassing GO obtained from peanut shells and parthenium hysterophorus. A detailed structural and electrochemical analysis revealed a low Tafel slope (163.06 mV/decade), a high electrochemical surface area (25.0), and an onset potential of −0.68 V for walnut shell-derived GO. This novel use of biomass offers a renewable and affordable resource.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have