Abstract

Groundnut bud necrosis orthotospovirus (GBNV) is one of the causative plant viruses responsible for the outbreak of many viral epidemics in food crops across India and other south-Asian countries. Its management is a major challenge due to fast vector transmission, and the non-availability of appropriate agrochemical treatment. The timely detection of GBNV becomes indispensable for the effective management of viral infection and the periodic monitoring of plant health. We report the fabrication of graphene oxide (GO) based electrochemical immunosensor for the rapid and sensitive detection of GBNV. The immunoelectrode is prepared by depositing GO onto indium-tin oxide (ITO) coated glass substrates and functionalized by anti-GBNV antibodies using N-ethyl-N′-(3- dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide (EDC-NHS) conjugation chemistry. The response measurements of the immunoelectrodes revealed a sensitivity of 221 ± 1 μA μg−1 mL−1(n = 3) and limit of detection (LOD) of 5.7 ± 0.7 ng mL−1(n = 3) for the standard concentrations of GBNV antigen. Further, the GBNV detection was carried out in infected leaf extracts of three different host plants i.e., Tomato, Cowpea, and N. benthamiana, and the results have been compared with the conventionally used direct antigen coated enzyme-linked immunosorbent assay (DAC-ELISA) technique. The comparable results obtained for the detection of GBNV in infected plants using electrochemical immunosensing and DAC-ELISA techniques advocated the immense potential of GO based immunosensor as a point-of-care sensing device that is poised to overcome the limitations of the traditional methods of virus detection in field conditions and may transform the diagnostics in agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.