Abstract

Abstract Graphene, a remarkable material with exceptional properties, has been at the forefront of extensive scientific research in the past two decades, leading to a vast array of proposed applications. The material's structural strength, superior thermal and electrical conductivity, anti-corrosion properties, and versatile sensor capabilities has made it an exceedingly desirable option for various functions in the nuclear industry. However, despite the increasing interest in graphene's potential uses in the nuclear industry, a comprehensive and detailed review of its possible applications in this context is still missing. This article endeavors to bridge this gap by presenting a thorough analysis of the potential applications of graphene in the nuclear industry. Specifically, its applications to pre-reactor treatments, fuel enrichment, heavy water preparation, filtration, radionuclide waste conditioning, monitoring through sensors, augmented heat transfer and corrosion prevention. These areas offer numerous opportunities for graphene-based materials to enhance the efficiency, safety, and reliability of nuclear power plants. This article not only illuminates the exciting opportunities of graphene usage in the nuclear field but also serves as a valuable resource for researchers, policymakers and stakeholders seeking to leverage the unique properties of graphene to drive innovation and advancement in the nuclear industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call