Abstract

Facile mapping of 2D heterostructures and resolving anisotropic formation kinetics down to the monolayer level are critical to developing scalable interfacing solutions and unlocking their application potential in emerging nano-optoelectronics. We adapt a Kramers–Kronig constrained variational fitting algorithm for spectroscopic imaging ellipsometry (SIE) to facilitate multi-scale heterostructure analysis comprising films with unknown complex dielectric functions and demonstrate how this enables non-destructive, scalable mapping and operando capability for the model system of HfS2 oxidation. This methodology proves highly accurate for assessing the thickness of buried HfS2 layers, oxide quality, and lateral and vertical uniformity. We capture dynamic stack evolution during thermal oxidation up to 400 ∘C, providing insights into the temperature and time-dependent nature of self-limiting oxide growth and reaction kinetics that involve the localised trapping and release of sulphur reaction products. Our methodology is versatile in material and device horizons, and advantageously agnostic to the underlying substrate. Combined with the various modes of SIE operation, it unlocks fast, high-throughput, large-area capability to accelerate process development at the atomic scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.