Abstract

Graphene is the first example of truly two-dimensional crystals—it is just one layer of carbon atoms. It turns out to be a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene demonstrate charge-conjugation symmetry between electrons and holes and possess an internal degree of freedom similar to “chirality” for ultrarelativistic elementary particles. It provides an unexpected bridge between condensed matter physics and quantum electrodynamics (QED). In particular, the relativistic Zitterbewegung leads to the minimum conductivity of the order of conductance quantum e 2 / h in the limit of zero doping; the concept of Klein paradox (tunneling of relativistic particles) provides an essential insight into electron propagation through potential barriers; vacuum polarization around charge impurities is essential for understanding of high electron mobility in graphene; an index theorem explains the anomalous quantum Hall effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.