Abstract

AbstractGraphene is the first example of truly two‐dimensional crystals – it's just one layer of carbon atoms. It turns out that graphene is a gapless semiconductor with unique electronic properties resulting from the fact that charge carriers in graphene obey linear dispersion relation, thus mimicking massless relativistic particles. This results in the observation of a number of very peculiar electronic properties – from an anomalous quantum Hall effect to the absence of localization. It also provides a bridge between condensed matter physics and quantum electrodynamics and opens new perspectives for carbon‐based electronics. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.