Abstract

Explosions of benzene, toluene and xylenes were carried out in a 16.7 L chamber in the presence of O2 at different fuel-rich molar ratios such that an aerosol of elemental carbon was produced. The product was a powder at higher precursor oxygen content and an aerosol gel at lower oxygen where the carbon yield was larger. The explosion temperature was measured by a spectrometer that detected black body, Planck radiation from the incandescent carbon, the analysis of which indicated temperatures in the range 2000–2500 K. The product collected was characterized by Raman, X-ray diffraction, Brunauer, Emmett and Teller (BET) specific surface area, high-resolution transmission electron microscopy (HRTEM), etc. HRTEM and Raman showed two product types: amorphous soot at a lower explosion temperature and few-layer graphene at a higher explosion temperature. BET showed that the graphene sample is highly porous and has a specific surface area of 388 m2/g. We conclude that chamber explosion of aromatic hydrocarbons can produce graphene, and the high explosion temperature during the reaction is the primary reason graphene is formed rather than soot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.