Abstract

The possibility of parallel processing of several features was investigated experimentally for the two methods allowing the crystallographically controlled nanopatterning of graphene: scanning tunneling lithography (STL) and carbothermal etching (CTE). It was found that with multitip systems both methods are suitable for parallel processing. CTE has the advantages that only in the atomic force microscope (AFM) indentation phase is needed the multitip system and it can reveal the location of grain boundaries, so that the nanodevices can be placed in a way that they do not cross grain boundaries. STL is well suited for purposefully producing twisted graphene multilayers with precisely-know misorientations of the individual layers, as also evidenced by Moiré-type patterns observed in the atomic resolution scanning tunneling microscopy (STM) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.