Abstract
We analyze a new fundamental building block for monolithic nanoengineering on graphene: the Inverse-Stone-Thrower-Wales (ISTW) defect. The ISTW is formed from a pair of joined pentagonal carbon rings placed between a pair of heptagonal rings; the well-known Stone-Thrower-Wales (STW) defect is the same arrangement, but with the heptagonal rather than pentagonal rings joined. When removed and passivated with hydrogen, the structure constitutes a new molecule, diazulene, which may be viewed as the result of an ad-dimer defect on anthracene. Embedding diazulene in the honeycomb lattice, we study the effect of ad-dimers on planar graphene. Because the ISTW defect has yet to be experimentally identified, we examine several synthesis routes and find one for which the barrier is only slightly higher than that associated with adatom hopping on graphene. ISTW and STW defects may be viewed as fundamental building blocks for monolithic structures on graphene. We show how to construct extended defect domains on the surface of graphene in the form of blisters, bubbles, and ridges on a length scale as small as 2 angstroms by 7 angstroms. Our primary tool in these studies is density functional theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.