Abstract
Within this study, a periodic metasurface structure made up of two graphene strips, two fan-shaped graphene and a square ring graphene with notches is introduced to achieve plasma-induced transparency (PIT). The PIT effect is analyzed utilizing the Lorentz oscillatory coupling model, and it has been discovered that the theoretical values closely match the simulated values. The role of the Fermi level adjustments in graphene on the PIT effect was examined, and the PIT window was dynamically modified as the Fermi level changed, which was used to realize a 2-bit graphene encoder at 5.78 THz and 7.18 THz. The encoder boasts a greatest modulation depth of 80.9 % and exhibits a minimal insertion loss of 0.17 dB. By controlling the polarization direction of the incident photoelectric field, a high performance dual-channel switching modulator is successfully realized. Moreover, by increasing carrier mobility, the depth of modulation for the modulator at 11.22 THz is increased from 97.5 % to 99.5 %, and the insertion loss has dropped from 0.075 dB to 0.06 dB. In addition, the structure has superior sensing properties and slow light properties, featuring a sensitivity reaching up to 1.07 THz/RIU and a maximum group index of 293. The outcomes of our study contribute novel insights for the advancement of modulator, encoder, sensor technology and slow-light devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have