Abstract

In this paper, graphene/mica and graphene/SiO2 based ammonia gas sensors are compared. It is found that adsorbed NH3 molecules result in up-shifting of the Fermi level in graphene, leading to a significant increase in graphene resistance. In comparison with SiO2 supporting substrate, the mica supporting substrate is found to induce more p-doping in graphene, in favour of NH3 molecule adsorption, yielding a high sensitivity. These findings suggest that the substrate plays an important role in mediating the interaction between graphene and NH3 molecules and that mica can be an excellent underlying substrate for graphene for ammonia gas detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.