Abstract

This study presents composite electrode materials based on graphene oxide (GO) and transition metal oxide nanostructures for supercapacitor applications. Electrophoretic deposition of GO on a conductive substrate was used to form reduced graphene oxide (rGO) films through chemical reduction. The specific capacitance of the rGO was calculated up to 117 F/g at 100 mV/s scan rate from KOH (1 M) electrolyte using an Ag/AgCl reference electrode. The strong interaction of GO with Co3O4 and MnO2 nanostructures was demonstrated in the self-assembled Langmuir–Blodgett monolayer composite, showing the potential to fabricate thin film supercapacitor electrodes without using binder materials. This two-step process is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.