Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have