Abstract

AbstractGraphene unique physicochemical properties made it prominent among other allotropic forms of carbon, in many areas of research and technological applications. Interestingly, in recent years, many studies exploited the use of graphene family nanomaterials (GNMs) for biomedical applications such as drug delivery, diagnostics, bioimaging, and tissue engineering research. GNMs are successfully used for the design of scaffolds for controlled induction of cell differentiation and tissue regeneration. Critically, it is important to identify the more appropriate nano/bio material interface sustaining cells differentiation and tissue regeneration enhancement. Specifically, this review is focussed on graphene‐based scaffolds that endow physiochemical and biological properties suitable for a specific tissue, the nervous system, that links tightly morphological and electrical properties. Different strategies are reviewed to exploit GNMs for neuronal engineering and regeneration, material toxicity, and biocompatibility. Specifically, the potentiality for neuronal stem cells differentiation and subsequent neuronal network growth as well as the impact of electrical stimulation through GNM on cells is presented. The use of field effect transistor (FET) based on graphene for neuronal regeneration is described. This review concludes the important aspects to be controlled to make graphene a promising candidate for further advanced application in neuronal tissue engineering and biomedical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.