Abstract

Control over the magnetic interactions in dilute magnetic semiconductor quantum dots (DMSQDs) is a key issue to future development of nanometer-sized integrated "spintronic" devices. However, manipulating the magnetic coupling between impurity ions in DMSQDs remains a great challenge because of the intrinsic quantum confinement effects and self-purification of the quantum dots. Here, we propose a hybrid structure to achieve room-temperature ferromagnetic interactions in DMSQDs, via engineering the density and nature of the energy states at the Fermi level. This idea has been applied to Co-doped ZnO DMSQDs where the growth of a reduced graphene oxide shell around the Zn(0.98)Co(0.02)O core turns the magnetic interactions from paramagnetic to ferromagnetic at room temperature, due to the hybridization of 2p(z) orbitals of graphene and 3d obitals of Co(2+)-oxygen-vacancy complexes. This design may open up a kind of possibility for manipulating the magnetism of doped oxide nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.