Abstract
Graphene, a one-atom thick, two-dimensional sheets of sp2hybridized carbon atoms packed in a hexagonal lattice with a Caron-Carbon distance of about 0.142 nm. Its extended honeycomb network forms the basic building block of other important allotropes; it can be stacked to form 3-Dgraphite, rolled to form 1-D-nanotubes and wrapped to form 0-D-fullerenes. Long-range π conjugation in graphene results in its extraordinary thermal, mechanical and electrical properties, which have been the interest of many theoretical studies and recently became an exciting area for scientists. Graphene is impermeable to gas and liquids, has excellent thermal conductivity and higher current density in comparison to other most effective materials. All of its exceptional properties have opened up new avenues for the use of graphene in nano-devices and nano-systems, which initiated its prominent use as a material for drug targeting. In addition, several fabrication techniques are outlined, starting from the mechanical exfoliation of high-quality graphene to the direct growth on silicon carbide or metal substrates and from the chemical routes utilizing graphene oxide to the newly developed approach at the molecular level. By this article reviewers intend to emphasize on unique properties, fabrication techniques and updated applications of graphene. In addition, we discuss about the potential of graphene in drug targeting in fields of nanotechnology, biomedical engineering and technology and its use for innovations in various fields such as electronics and photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.