Abstract

AbstractIn the graph sharing game, two players share a connected graph G with nonnegative weights assigned to the vertices claiming and collecting the vertices of G one by one, while keeping the set of all claimed vertices connected through the whole game. Each player wants to maximize the total weight of the vertices they have gathered by the end of the game, when the whole G has been claimed. It is proved that for any class of graphs with an odd number of vertices and with forbidden subdivision of a fixed graph (e.g., for the class of planar graphs with an odd number of vertices), there is a constant such that the first player can secure at least the proportion of the total weight of G whenever . Known examples show that such a constant does no longer exist if any of the two conditions on the class (an odd number of vertices or a forbidden subdivision) is removed. The main ingredient in the proof is a new structural result on weighted graphs with a forbidden subdivision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.