Abstract
Graph Neural Networks (GNNs) belong to a class of deep learning methods that are specialized for extracting critical information and making accurate predictions on graph representations. Researchers have been striving to adapt neural networks to process graph data for over a decade. GNNs have found practical applications in various fields, including physics simulations, object detection, and recommendation systems. Predicting missing links in graphs is a crucial problem in various scientific fields because real-world graphs are frequently incompletely observed. This task, also known as link prediction, aims to predict the existence or absence of links in a graph. This tutorial is designed for researchers who have no prior experience with GNNs and will provide an overview of the link prediction task. In addition, we will discuss further reading, applications, and the most commonly used software packages and frameworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.