Abstract
Learning from graph and relational data plays a major role in many applications including social network analysis, marketing, e-commerce, information retrieval, knowledge modeling, medical and biological sciences, engineering, and others. In the last few years, Graph Neural Networks (GNNs) have emerged as a promising new supervised learning framework capable of bringing the power of deep representation learning to graph and relational data. This ever-growing body of research has shown that GNNs achieve state-of-the-art performance for problems such as link prediction, fraud detection, target-ligand binding activity prediction, knowledge-graph completion, and product recommendations. The objective of this tutorial is twofold. First, it will provide an overview of the theory behind GNNs, discuss the types of problems that GNNs are well suited for, and introduce some of the most widely used GNN model architectures and problems/applications that are designed to solve. Second, it will introduce the Deep Graph Library (DGL), a new software framework that simplifies the development of efficient GNN-based training and inference programs. To make things concrete, the tutorial will provide hands-on sessions using DGL. This hands-on part will cover both basic graph applications (e.g., node classification and link prediction), as well as more advanced topics including training GNNs on large graphs and in a distributed setting. In addition, it will provide hands-on tutorials on using GNNs and DGL for real-world applications such as recommendation and fraud detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.