Abstract

Advances in neuroimaging techniques such as diffusion MRI and functional MRI enabled evaluation of the brain as an information processing network that is called connectome. Connectomic analysis has led to numerous findings on the organization of the brain its pathological changes with diseases, providing imaging-based biomarkers that help in diagnosis and prognosis. A large majority of connectomic biomarkers benefit either from graph-theoretical measures that evaluate brain's network structure, or use standard metrics such as Euclidean distance or Pearson's correlation to show between-connectomes relations. However, such methods are limited in diagnostic evaluation of diseases, because they do not simultaneously measure the difference between individual connectomes, incorporate disease-specific patterns, and utilize network structure information. To address these limitations, we propose a graph matching based method to quantify connectomic similarity, which can be trained for diseases at functional systems level to provide a subject-specific biomarker assessing the disease. We validate our measure on a dataset of patients with traumatic brain injury and demonstrate that our measure achieves better separation between patients and controls compared to commonly used connectomic similarity measures. We further evaluate the vulnerability of the functional systems to the disease by utilizing the parameter tuning aspect of our method. We finally show that our similarity score correlates with clinical scores, highlighting its potential as a subject-specific biomarker for the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.