Abstract
The complexity of graph isomorphism (GraphIso ) is a famous problem in computer science. For graphs G and H, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso ) is NP -complete: for each u∈V(G), we are given a list L(u)⊆V(H) of possible images of u. After 35 years, we revive the study of this problem and consider which results for GraphIso can be modified to solve ListIso. We prove: 1) Under certain conditions, GI -completeness of a class of graphs implies NP -completeness of ListIso. 2) Several combinatorial algorithms for GraphIso can be modified to solve ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, and bounded treewidth graphs. 3) ListIso is NP -complete for cubic colored graphs with sizes of color classes bounded by 8 with all lists of size at most 3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.