Abstract

Accurate determination of target-ligand interactions is crucial in the drug discovery process. In this paper, we propose a graph-convolutional (Graph-CNN) framework for predicting protein-ligand interactions. First, we built an unsupervised graph-autoencoder to learn fixed-size representations of protein pockets from a set of representative druggable protein binding sites. Second, we trained two Graph-CNNs to automatically extract features from pocket graphs and 2D ligand graphs, respectively, driven by binding classification labels. We demonstrate that graph-autoencoders can learn fixed-size representations for protein pockets of varying sizes and the Graph-CNN framework can effectively capture protein-ligand binding interactions without relying on target-ligand complexes. Across several metrics, Graph-CNNs achieved better or comparable performance to 3DCNN ligand-scoring, AutoDock Vina, RF-Score, and NNScore on common virtual screening benchmark data sets. Visualization of key pocket residues and ligand atoms contributing to the classification decisions confirms that our networks are able to detect important interface residues and ligand atoms within the pockets and ligands, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.