Abstract
Video summarization is the process of generating a concise and representative summary of a video by selecting its most important frames. It plays a vital role in the video streaming industry, allowing users to quickly understand the overall content of a video without watching it in its entirety. Most existing video summarization methods require fully decoding the video stream and extracting the features with a pre-trained deep learning model in the pixel domain, which is time-consuming and computationally expensive. To address this issue, this paper proposes a novel method called Graph Convolutional Network-based Compressed-domain Video Summarization (GCNCVS), which directly exploits the compressed-domain information and leverages graph convolutional network to learn temporal relationships between frames, thereby enhancing its ability to capture contextual and valuable information when generating summarized videos. To evaluate the performance of GCNCVS, we conduct experiments on two benchmark datasets, SumMe and TVSum. Experimental results demonstrate that our method outperforms existing methods, achieving an average F-score of 53.5% on the SumMe dataset and 72.3% on the TVSum dataset. Additionally, the proposed method shows Kendall's τ correlation coefficient of 0.157 and Spearman's ρ correlation coefficient of 0.205 on the TVSum dataset. Our method also significantly reduces computational time, which enhances the feasibility of video summarization in video streaming environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have