Abstract
AbstractSimulation of swarm motion is a crucial research area in computer graphics and animation, and is widely used in a variety of applications such as biological behavior research, robotic swarm control, and the entertainment industry. In this paper, we address the challenges of preserving structural relations between the individuals in swarm flight simulations by proposing an innovative motion control framework that utilizes a graph‐based hierarchy to illustrate patterns within a swarm and allows the swarm to perform flight motions along externally specified paths. In addition, this study designs motion propagation strategies with different focuses for varied application scenarios, analyzes the effects of information transfer latencies on pattern preservation under these strategies, and optimizes the control algorithms at the mathematical level. This study not only establishes a complete set of control methods for group flight simulations, but also has excellent scalability, which can be combined with other techniques in this field to provide new solutions for group behavior simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.