Abstract
Abstract This paper presents a supervised approach to the recognition of Cross-document Structure Theory (CST) relations in Polish texts. Its core is a graph-based representation constructed for sentences. Graphs are built on the basis of lexicalised syntactic-semantic relations extracted from text. Similarity between sentences is calculated as similarity between their graphs, and the values are used as features to train the classifiers. Several different configurations of graphs, as well as graph similarity methods were analysed for this task. The approach was evaluated on a large open corpus annotated manually with 17 types of selected CST relations. The configuration of experiments was similar to those known from SEMEVAL and we obtained very promising results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have