Abstract
The importance of an efficient network resource allocation strategy has grown significantly with the rapid advancement of cellular network technology and the widespread use of mobile devices. Efficient resource allocation is crucial for enhancing user services and optimizing network performance. The primary objective is to optimize the power distribution method to maximize the total aggregate rate for all customers within the network. In recent years, graph-based deep learning approaches have shown great promise in addressing the challenge of network resource allocation. Graph neural networks (GNNs) have particularly excelled in handling graph-structured data, benefiting from the inherent topological characteristics of mobile networks. However, many of these methodologies tend to focus predominantly on node characteristics during the learning phase, occasionally overlooking or oversimplifying the importance of edge attributes, which are equally vital as nodes in network modeling. To tackle this limitation, we introduce a novel framework known as the Heterogeneous Edge Feature Enhanced Graph Attention Network (HEGAT). This framework establishes a direct connection between the evolving network topology and the optimal power distribution strategy throughout the learning process. Our proposed HEGAT approach exhibits improved performance and demonstrates significant generalization capabilities, as evidenced by extensive simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.