Abstract
A considerable number of grape pomaces are generated annually. It represents a rich source of bioactive compounds, such as phenolic compounds and anthocyanins. Pressurized liquid extraction (PLE) has emerged as a green technology for recovering bioactive compounds from vegetal matrixes. In our study, PLE parameters (temperature, number of cycles, and rinse volume) have been studied to produce grape pomace extracts with high bioactive content using an experimental design. The experimental data obtained were adjusted to linear and quadratic models. The first-order model was better in predicting anthocyanins contents (TA, R2 = 0.94), whereas the second-order model was predictive for total phenolic compounds (TPC, R2 = 0.96). The main process parameter for the recovery of bioactive compounds was temperature, and the results showed opposing behaviors concerning TPC and TA, as it is difficult to optimize conditions for both. The extract containing the higher concentration of TPC (97.4 ± 1.1 mg GAE/g, d.b.) was encapsulated by spray-drying using maltodextrin as wall material. Particles presented with a spherical shape (~7.73 ± 0.95 μm) with a recovery yield of 79%. The results demonstrated that extraction followed by encapsulation of grape pomace extract is a good strategy to simplify future applications, whether for food, cosmetics or pharmaceutical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.