Abstract
The purpose of the current study was to determine the phenolic composition, antioxidant, and antimicrobial activities in grape cane extracts from typical cultivars of Southern Italy. Aqueous extracts at different pHs (1–13) were prepared from “Aglianico”, “Fiano”, and “Greco” grape canes. The results demonstrated that an alkaline pH (13.00) produced the best polyphenol-rich extracts, as the total phenolic content was more than double when compared to the respective extracts prepared at pH 1.00. “Greco” grape canes gave the highest quantity of phenolic compounds at each pH, ranging from 42.7 ± 0.4 to 104.3 ± 3.0 mg Gallic Acid Equivalents (GAE)/g Dry Extract (DE) from pH 1.00 to 13.00. The Radical Scavenging Activity (RSA) and the Ferric Reducing Antioxidant Power (FRAP) were measured. The highest antioxidant activity was showed by “Greco” extract at pH 7.00. Seventy-five compounds were identified in the extracts by HPLC-MS with six of them described for the first time in grape canes. Procyanidins were highly abundant in extracts at pH 7.00, whereas stilbenoids were the most represented compounds at pH 13.00. Very strong antiviral activity against herpes simplex viruses was recorded for the extracts at pH 7.00 and 13.00 that were active in the early stages of infection by acting directly against the viral particles. The overall results suggest that grape canes, currently underutilized, can be usefully valorised by providing active extracts to use as antioxidant and antiviral agents.
Highlights
IntroductionInterest in the exploitation of agro-industrial wastes as natural sources for the production of high added-value compounds is constantly growing
Powdered grape canes were dried in order to remove the water content prior to the extraction
The pH effect during the extraction process (1.00–13.00). Was considered in this set of experiments to investigate its influence on the yield, and on the qualitative and quantitative composition of the extracts from the different cultivars
Summary
Interest in the exploitation of agro-industrial wastes as natural sources for the production of high added-value compounds is constantly growing. The circular economy model proposes the use of materials that were traditionally considered waste, as a resource [1]. Agricultural and industrial processing activities produce large amounts of liquid and solid wastes that can be conveniently utilised before disposal. These residues are burned or used for composting, even though they still contain valuable bioactive molecules that can be used for a number purposes in a range of sectors [2,3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.