Abstract
We previously found that an i.p. injection of anti-CD3 monoclonal antibody (mAb) into mice caused DNA fragmentation in the intestinal villous epithelial cells (IVECs) of the duodenum and the jejunum. In this study, in order to elucidate the mechanism of DNA fragmentation in IVECs, we searched for the inducer(s) of DNA fragmentation by using immunohistochemistry. The release of cytoplasmic granules from intraepithelial lymphocytes (IELs) and the formation of large gaps between IELs and IVECs were observed electron microscopically after antibody administration. The presence and distribution pattern of Granzyme B (GrB), a serine protease in cytolytic granules present in cytotoxic T lymphocytes and natural killer cells and considered to be the responsible molecule for DNA fragmentation in target cells, was examined in detail in intestinal villi by immunohistology. GrB was detected in cytoplasmic granules in nearly all IELs. The time-kinetics of granule release from IELs after mAb injection coincided not only with that of the extracellular diffusion of GrB, but also with that of DNA fragmentation in IVECs. On the other hand, perforin (Pfn), assumed to cooperate with GrB in DNA fragmentation, could not be detected in IELs, and its release was not confirmed after the anti-CD3 mAb injection. Anti-CD3 mAb injection also induced DNA fragmentation in IVECs in Pfn-knockout mice. These results support the notion that DNA fragmentation in IVECs by the stimulated IELs in the present study is induced by a mechanism involving GrB, but independent of Pfn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.