Abstract

The objective of this study was to evaluate the effects of growth factor supplementation and Vero cell co-culture on apoptosis and development of frozen thawed one-cell mouse embryos. The following treatment regimens were assessed: (a) control medium (b) Vero cell co-culture and (c) growth factor supplemented medium. The individual growth factors tested were: GM-CSF, IGF-I, IGF-II, TNF-alpha, FGF-4, LIF, TGF-alpha, TGF-beta, IL-6, PDGF and EGF. Blastocyst development and differentiation were monitored. At termination of the experiments, overall blastomere number and apoptosis were assessed using the TUNEL assay. No differences were observed in blastulation and hatching rates. ICM differentiation in thawed embryos was notably improved with either co-culture or growth factor supplementation. The only growth factor significantly modulating apoptosis in thawed embryos was granulocyte-macrophage colony stimulating factor (GM-CSF). GM-CSF enhanced continued cell survival and prevented apoptosis but did not influence overall cell number in developing blastocysts. Vero cell co-culture significantly increased cell number in blastocysts (124+/-42 vs 100+/-44 in control; P<0.05). Embryonic apoptosis was higher in the co-cultured embryos. The increased presence of apoptotic cells in blastocysts of high cell number may reflect the regulatory role of apoptosis in balancing ICM: TE ratios. These data indicate that culture conditions can modulate post-thaw embryonic development and apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.