Abstract

Abstract. Early Cretaceous granitic intrusions are associated with Au‐quartz veins and Cu‐Fe skarns in the the Kitakami Mountains, which are underlain by the late Paleozoic of continental margin‐type sedimentary rocks and Mesozoic accretionary complexes. The plutonic rocks are divided into potassic, high‐Sr/Y calc‐alkaline and low‐Sr/Y calc‐alkaline series. All the metallic mineral deposits are spatially associated with small stocks and plugs; they show no consistent association with the larger plutonic bodies. The plutonic rocks generally belong to the magnetite series but less oxidized in the southwestern part of the Kitakami Mountains where Au‐quartz veins occur. The gold deposits are classified into high and low sulfide types.The high sulfide type contains a high volume of sulfide minerals mostly of chalcopyrite, arsenopyrite and pyrrhotite with low bulk Au/Ag ratios. This type occurs almost exclusively in and surrounding the Orikabe pluton, including two most important gold deposits (Oya and Kohoku) of the Kitakami Mountains. The pluton is composed of potassic gabbroids, potassic granitoids of the shoshonite ‐ high‐K calc‐alkaline series (Orikabe type), and less potassic Sasamori‐type granodiorite. All these rocks belong to a moderately oxidized magnetite series. The Orikabe pluton has one of the lowest initial Sr ratio (0.70392) in the Kitakami Mountains, and the Au‐Cu‐dominant ore components of the high sulfide type Au deposits are considered magmatic in origin carried by the juvenile magmas from the upper mantle.The low sulfide type is generally plain quartz vein with a low volume of sulfides and a high bulk Au/Ag ratio. The associated minerals are often scheelite and/or arsenopyrite and pyrrhotite. The ore deposits include historically famed Au‐quartz veins at Shishiori and Ogayu. They are widespread in the southwestern Kitakami Mountains and may be later than the high sulfide type in age, and are hosted most commonly in the sedimentary rocks, which surround small weakly oxidized magnetite‐series plutons of low to intermediate Sr/Y series. These less differentiated intrusions typically include quartz dior‐ite and granodiorite. Some ore components of this type may have derived from the host sedimentary rocks.Among other mineral deposit types in the region, the largest ore deposit is Kamaishi Cu‐Fe skarn (magnetite ores of 58 MT, Fe 50–64 %; Cu 143 KT). It is related to the high‐Sr/Y series Ganidake granodiorite stock, which is a strongly oxidized magnetite‐series body. In contrast, the second largest deposit in the mountains, Akagane deposit, is a similar‐type skarn but associated with an intrusion classified as less oxidized, ilmenite to intermediate series, and that is intermediate in Sr/Y of calc‐alkaline series granodiorite. Degree of magmatic differentiation appears to be not critical factor in the formation of Au‐quartz vein and Cu‐Fe skarn deposits in the region, but is definitely significant for controlling the distribution of the Mo‐mineralization to the east.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.