Abstract

In peneplaned terranes, it is often impossible to get a full 3D view of geological objects. In the case of granitic plutons, for which intrusive relationships between constituent units can provide first order information regarding their petrogenesis, this lack of 3D field evidence is a major issue. Indirect observations can be provided by geophysical surveys. Here, we interpret field gravity data and airborne gamma ray radiometric maps with whole rock geochemistry data in order to obtain information on granite petrogenesis. First, we test our proposed combined geophysical and geochemical approach on the Huelgoat Variscan intrusion (Armorican Massif, France) and we show that ternary radiometric maps are a good proxy for the distribution of K, U and Th radioelements. Then, we apply our method to the Lizio and Questembert Variscan granitic intrusions (Armorican Massif) and show that some features characteristic of the intrusions, such as the feeding zones, can be localised by geophysical imaging. Indeed, radiometric maps constitute a frozen image of the latest stage of the magmatic building of plutons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.