Abstract
AbstractNonmetallic minerals like granite and limestone have calcite and biotitic ingredients as their major part which exhibit wonderful absorption features in the visible and short wave range of the electromagnetic spectrum. This research puts emphasis on delineating granite and limestone deposits of the Mardan district through the latest multispectral Landsat‐9 and Sentinel‐2 sensors of which the latter provided 94% mapping accuracy in delineating granites (biotitic bearing minerals) and limestone (calcite‐bearing minerals). The Image processing techniques of minimum noise fraction, which is double cascaded principal components analysis and pixel purity index algorithms proved helpful to bring significant improvements in classification results and in the reduction of noise and data size. The outcomes of the research study show that supervised machine learning algorithms are impactful to map such minerals provided that the data must be well organized and limited in size. The results achieved were verified through validation steps like, (a) Independent reference data of high‐resolution Google Earth maps and (b) Ground survey reports. Arc GIS 10.2 and Envi 5.3 software suite were used to create (a) ground truth points at random for accuracy assessment (b) portraying study area maps (c) Image Processing and Preprocessing tools and (d) implementation of machine learning algorithms. Access to the data and software suite is being provided for open research work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.