Abstract

Magnesium (Mg) alloys with hexagonal close-packed (HCP) structure usually have a poor ductility at room temperature. The addition of yttrium (Y) can improve the ductility of Mg alloys. To understand the underlying mechanism, crystal plasticity finite element method (CPFEM) was employed to simulate the tensile deformation of a Mg−0.8 wt% Y alloy. The simulated stress‒strain curve and the grain-scale slip activities were compared with an in-situ tensile test conducted in a scanning electron microscope. According to the CPFEM result, basal slip is the dominant deformation mode in the plastic deformation stage, accounting for about 50% of total strain. Prismatic slip and pyramidal 〈a〉 slip are responsible for about 25% and 20% of the total strain, respectively. Pyramidal ⟨c + a⟩ slip and twinning, on the other hand, accommodate much less strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.