Abstract

Due to its high electrical conductivity and platinum-like electronic structure, molybdenum phosphide (MoP) has attracted extensive attention as a potential catalyst for the hydrogen evolution reaction (HER) by water splitting. Nevertheless, in the oxygen evolution reaction (OER), the electrocatalytic performance of MoP did not achieve satisfactory results. Therefore, novel nitrogen-doped carbon-encapsulated La-doped MoP nanoparticles (La-MoP@N/C) are synthesized, which show outstanding durability and electrocatalytic activity in both HER and OER. Detailed structural characterization and calculations confirm that La doping not only effectively adjusts the electron density around Mo and P atoms, accelerates the adsorption and desorption processes, but also increases the number of active sites. Low overpotentials of 113 and 388 mV for HER and OER at 10 mA cm−2 are achieved with the optimized La0.025-Mo0.975P@N/C. Furthermore, the two-electrode electrolyzer assembled with La0.025-Mo0.975P@N/C also presents impressive water splitting performance. This study indicates that rare earth doping can be used as an efficient strategy to control the local electronic structure of phosphides precisely, which can also be extended to other electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.