Abstract

Inverse Hall-Petch (IHP) behavior in nano-quasicrystalline Al62.5Cu25Fe12.5 is reported. Powders with varying grain sizes were produced by mechanical milling of spray-formed quasicrystals. The hardness of the milled powders increased with decreasing grain size down to about 40 nm and decreased with further refinement, demonstrating the IHP behavior. This critical grain size was found to be larger compared to other metallic nanocrystalline alloys. This IHP behaviour has been attributed to the structural complexity in quasicrystals and to thermally activated shearing events of atoms at the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.