Abstract

The effect of grain size on the deformation twinning and de-twinning in a nanocrystalline Ni-Fe alloy was investigated using transmission electron microscopy. Specimens with different grain sizes were obtained by severely deforming an electrochemically deposited nanocrystalline Ni-20wt.% Fe alloy using high-pressure torsion, which resulted in continuous grain growth from an average grain size of ~ 21 nm in the as-deposited material to ~ 72 nm for the highest strain applied in this study. Results show that deformation de-twinning occurs at very small grain sizes while deformation twinning takes place when the grain size is larger than ~ 45 nm. The mechanism of the observed grain size effect on twinning and de-twinning is briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call