Abstract
Previous observations have shown smaller grain sizes and higher strengths in W-Ni-Fe heavy alloys containing molybdenum. This study focuses on the microstructure and grain growth kinetics for the W-Mo-Ni-Fe system processed at 1500 °C. The initial rate of grain growth follows an approximate square root time dependence in contrast to the cube root dependence typical for W-Ni-Fe alloys. Microprobe measurements show that chemical gradients are present in the solid grains, with high molybdenum content cores. The retarded grain growth from molybdenum additions is the result of a decreased tungsten solubility in the liquid during the early stages of sintering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.