Abstract

An anomaly in the dependence of the kinetics of grain growth on the temperature for strontium titanate (ST) ceramics is reported in this work. It consists of a decrease of the grain size with increasing sintering temperature. Recently, a drop in the grain boundary mobility of ST in the same temperature range was reported. These observations imply an unusual decrease of the grain size with the increase of the sintering temperature, in agreement with our present results. Although the mobility drop was related to structural changes in grain boundaries, the exact mechanism involved is still unknown. The understanding of this anomaly may offer an alternative way of controlling the microstructure and tuning the dielectric response of ST based compositions without the use of dopants. ST is characterized by high dielectric permittivity, high tunability and low dielectric losses, and is thus a particularly interesting material for capacitor or tunable microwave devices. These properties are very dependent on the stoichiometry, structure and microstructure, in which the role of grain boundaries is fundamentally important. Indeed, increasing attention has been paid to grain boundary structures and nonstoichiometry and to its relation with microstructure and electrical properties. Densification proceeds faster with decreasing Sr/Ti ratio (Ti-rich compositions). Sr-rich samples show narrow grain size distributions, while Ti excess favors enlarged grain size distributions and faceting of the grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.