Abstract

An yttrium aluminum garnet (YAG) precursor precipitate was synthesized by urea method using yttria (Y2O3) and aluminum nitrate (Al(NO3)3·9H2O) as raw materials. The fresh wet precipitate was dried by supercritical carbon dioxide (CO2) fluid and the resulting powder was calcined at temperatures from 600 to 1600 °C. Crystallization of YAG was detected at 800 °C, and completed at 900 °C. HRTEM images of the YAG product obtained above 900 °C revealed crystallographically specific oriented attachment along the [1 1 2] direction. Based on the observation of the particle morphology a possible growth mechanism of YAG nanoparticles was presented. The fast increase on the average crystallite size of YAG at temperatures from 900 to 1300 °C is attributed to the crystallographically specific oriented attachment growth process. As the growth process proceeds at higher temperatures, oriented attachment based growth becomes less important because of the increase on particle size, and the self-integration assisted by the Ostwald ripening becomes dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.