Abstract
Bulk samples of nanocrystalline tetragonal zirconia polycrystal (TZP), with 3 mol.% Y 2O 3, were fabricated over a range of average grain sizes (16–70 nm) by partial sintering. The samples were measured using AC-impedance spectroscopy over a range of temperatures, and porosity-corrected electrical results were interpreted in terms of microstructural models. Whereas the conventional brick layer model (BLM) significantly overestimated the specific grain boundary conductivity at the nanoscale, our recently developed nano-Grain Composite Model (n-GCM) allowed accurate determination of local grain boundary and grain core conductivities, grain boundary dielectric constants, and electrical grain boundary widths. Grain core effective dielectric constants were also separately measured on microcrystalline samples over a range of temperatures for use in the n-GCM analysis. It was found that TZP exhibits an enhanced local grain boundary conductivity at the nanoscale, but the enhancement is insufficient to improve the total conductivity. Rather, total conductivity decreased with decreasing grain size. Results were compared with those for nanocrystalline yttria-stabilized zirconia (8 mol.% Y 2O 3, YSZ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.