Abstract

Samples of an Al–3% Mg alloy and an Al–3% Mg–0.2% Sc alloy were subjected to equal-channel angular pressing (ECAP) to reduce the grain size to approximately 0.2–0.3 μm. Some samples of each alloy were also annealed for 1 h at temperatures of either 423 or 673 K, respectively. High-resolution electron microscopy was used to examine the microstructure both before and after annealing. The grain boundaries after ECAP were wavy and faceted and in high-energy nonequilibrium configurations. These results were consistent with earlier observations of materials subjected to severe plastic deformation using high-pressure torsion. In addition, some grain boundaries in the Al–Mg–Sc alloy had a zigzag appearance after annealing at 673 K, where the straight portions of the boundary were identified as low-energy {111} planes. It is suggested these are mobile boundaries lying in a lowest energy configuration where mobility may be restricted by the presence of incoherent Al3Sc particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.